首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有39条查询结果,搜索用时 859 毫秒
21.
Genetic diversities were examined using six microsatellite markers amplifiable in three rare and one widespread species of Tricyrtis section Flavae, which are endemic to Japan. Contrary to a general expectation, the three rare species, Tricyrtis flava, Tricyrtis ohsumiensis and Tricyrtis perfoliata, have comparable genetic variation at the species level to that of the widespread Tricyrtis nana. This is probably because T. nana has not sufficiently recovered genetic diversity from the bottleneck at speciation or because recent range contractions have occurred in the three rare species. Genetic diversity at the population level was smaller in the putative selfing species T. nana than in the other three outcrossing species. Compared with a preceding study using allozyme markers, the genetic diversity in microsatellite loci was considerably larger, probably resulting from higher mutation rates at the microsatellite loci. Owing to the high genetic diversity of the microsatellite markers, genetic differentiation among populations could be estimated even in T. nana with little allozyme polymorphism.  相似文献   
22.
Abstract Enzyme-electrophoretic variation was examined in sporophytes of Woodwardia japonica (2n= 68) and segregation was examined in gametophytes. Despite the high chromosome number, W. japonica displayed disomic segregation of isoenzyme patterns. This and karyotype analyses indicate that W. japonica is a diploid derived from a base number of either x= 17 or x= 34.  相似文献   
23.
Allozyme diversity was examined in 30 populations of the maritime perennial plant Hedyotis strigulosa var. parviflora , which is distributed from subtropical islands to the central mainland of Japan. Genetic diversity within populations tended to be larger in southern island populations than in northern mainland populations. In the southern part of the distribution, the population size is generally large and populations are distributed more continuously than in the northern area, resulting in the larger effective size of southern populations as a whole. These factors play a major role in maintaining greater genetic diversity in the southern populations. By contrast, genetic diversity in the northern populations is very low, probably resulting from bottlenecks of population establishments during recolonization from refugial area to the northern areas. Geographically close populations were located near each other in the multidimensional scaling and the phenogram based on genetic distances, suggesting that gene flow among remote populations is rather limited. The pattern of genetic diversity in H. strigulosa var. parviflora is likely caused by the distribution expansion of the species; in the last glacier era, the species was restricted to the southern area; its advance to the northern area is relatively recent. Another variety endemic only to the Daito Islands, H. strigulos a var. luxurians , has lower genetic diversity than H. strigulosa var. parviflora and has genetically diverged from H. strigulosa var. parviflor a.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 679–688.  相似文献   
24.
Pollinators of two Cynanchum , five Tylophora , and 16 Vincetoxicum species were observed in 26 populations in Japan. The following pollination systems were observed in 18 species: moth pollination, generalized insect pollination, wasp pollination, dipteran pollination, both dipteran and moth pollination, and autogamy. Principal component analysis based on 13 floral characters indicated that the size of the pollinator tended to increase with sizes of all characters measured. Furthermore, species that have developed interstaminal parts of the corona and concealed stigmatic chambers tend to be pollinated by long-tongued insects. The phylogenetic distribution of pollinator types showed that species belonging to Clade I are pollinated exclusively by Diptera, whereas those of Clade II are pollinated by four insect orders. The most prominent pollinator transition in the Tylophora–Vincetoxicum complex is dipteran to moth pollination. The most common morphological change of the plants from dipteran pollination to moth pollination, or vice versa, is modification of the corolla. In the Tylophora–Vincetoxicum complex, pollination mode shifts are generally accompanied by modifications of the corona and the structure of gynostegium. One hypothesis for the rapid radiation observed in Clade II is that a widely distributed species may have partitioned its distribution in the relatively near past and adapted to various environments, in which the dominant pollinators were different, and that the local races may then have diverged from each other after they were isolated.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 325–341.  相似文献   
25.
Crown Architecture and Species Coexistence in Plant Communities   总被引:1,自引:0,他引:1  
The relationships between crown architecture and species coexistencewere studied using the diffusion model and the canopy photosynthesismodel for multi-species plant communities. The present paperdeals with two species having different crown shapes [conic-canopyplant (CCP) and spheroidal-canopy plant (SCP)], for variousinitial mean sizes at the establishment stage and physiologicalparameter values (photosynthetic rate, etc.). Recruitment processeswere not incorporated into the model, and thus simulations weremade for the effects on the pattern of species coexistence ofeither sapling competition starting from different sapling banksor competition in single-cohort stands with little continualestablishment of species until a stand-replacement disturbance.The following predictions were derived: (1) SCPs can establishlater/slowly in the lower canopy layer even if they are overtoppedby a CCP which established first/rapidly; (2) if SCPs establishedfirst/rapidly and occupy the upper canopy layer, a CCP can rarelyestablish later/slowly in the lower canopy layer; (3) smallest-sizedCCPs can persist well in the lowermost canopy layer overtoppedby a SCP, suggesting a waiting strategy of CCP's saplings inthe understorey of a crowded stand; (4) even if CCPs establishedfirst/rapidly and occupy the upper canopy layer, an SCP canestablish later/slowly in the lower canopy layer. Therefore,the species diversity of SCPs which established first/rapidlyand occupy the upper canopy layer limits the number of CCP specieswhich can establish later/slowly. In contrast, the species diversityof CCPs which established first/rapidly and occupy the uppercanopy layer does not affect the number of SCP species whichcan establish later/slowly. The combination of initial sizesof a CCP and an SCP at the establishment stage (i.e. establishmenttiming) affects the segregation of vertical positions in thecanopy between the two species with different crown shape, andnot only species-specific physiological traits but also crownarchitecture greatly affects the coexistence pattern betweenspecies with different crown architectures. The theoreticalpredictions obtained here can explain coexistence patterns foundin single-cohort conifer-hardwood boreal and sub-boreal forests,pointing to the significance of crown architecture for speciescoexistence. Diffusion equation model; canopy photosynthesis model; conifer-hardwood boreal/sub-boreal forest; sapling establishment; vertical foliage profile  相似文献   
26.
(—)-Kauren-19-oic acid, a precursor of gibberellin A3,stimulated outgrowth of the lateral bud attached to a stem segmentexcised from an etiolated Alaska pea seedling. There was nosignificant difference in the degree of KA-induced responseat effective concentrations of 0.1, 1 and 10 mg/liter. Thiscompound required a longer period for its marked activity tobe observed than did gibberellin A3. (Received May 30, 1970; )  相似文献   
27.
Helminthosporol, helminthosporic acid and dihydrohelminthosporicacid stimulated hypocotyl elongation of light-grown cucumberseedlings. The relative activities of the three compounds werein the order H2-H-acid> H-acid> H-ol. The higher the dosage,the longer the promotion of the hypocotyl elongation lasted.The response of the hypocotyl to H-acid depended on the presenceof cotyledons. As the amount of the cotyledon attached to thehypocotyl was reduced, the response decreased. When IAA-oxidase was estimated as IAA metabolized per dry weightof the hypocotyl, there was an inverse relationship betweenIAAoxidase activity and H-ol-induced elongation of the hypocotyl.However, there was no difference between control and H-ol treatedmaterials when IAA metabolized per plant was compared. It isunlikely that the mechanism of H-ol action is closely relatedto IAA-oxidase activity of the plant. (Received April 5, 1967; )  相似文献   
28.
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil.  相似文献   
29.
1. Plants take nutrients from the rhizosphere via two pathways: (i) by absorbing soil nutrients directly via their roots and (ii) indirectly via symbiotic associations with nutrient‐providing microbes. Herbivorous insects can alter these pathways by herbivory, adding their excrement to the soil, and affecting plant–microbe associations. 2. Little is known, however, about the effects of herbivorous insects on plant nutrient uptake. Greenhouse experiments with soybean, aphids, and rhizobia were carried out to examine the effects of aphids on plant nutrient uptake. 3. First, the inorganic soil nitrogen and the sugar in aphid honeydew between aphid‐infected and ‐free plants were compared. It was found that aphid honeydew added 41 g m?2 of sugar to the soil, and that aphids decreased the inorganic soil nitrogen by 86%. This decrease may have been caused by microbial immobilisation of soil nitrogen followed by increased microbial abundance as a result of aphid honeydew. 4. Second, nitrogen forms in xylem sap between aphid‐infected and ‐free plants were compared to examine nitrogen uptake. Aphids decreased the nitrogen uptake via both pathways, and strength of the impact on direct uptake via plant roots was greater than indirect uptake via rhizobia. The reduced nitrogen uptake by the direct pathway was as a result of microbial immobilisation, and that by the indirect pathway was probably because of the interaction of microbial immobilisation and carbon stress, which was caused by aphid infection. 5. The present results demonstrate that herbivorous insects can negatively influence the two pathways of plant nutrient uptake and alter their relative importance.  相似文献   
30.
Reynoutria japonica is a common perennial pioneer species onJapanese volcanoes. In a volcanic desert (1500m above sea level)on Mount Fuji (3776m), central Japan, this species forms circularstands (patches). As a patch develops, shoot density decreasesin its centre (‘central die-back’). The centraldie-back has been considered a key process in the early stagesof primary succession, though its mechanism has been unknown. The pattern of patch development, population dynamics of aerialshoots, and growth patterns of below-ground organs were analysedin order to investigate the mechanism of die-back, and the followingtraits are clarified: (1) central die-back areas occur in mostsmall patches (approx. 1m2) without later successional species;(2) shoot characteristics are dependent both on their positionwithin a patch and on patch size; (3) despite the large differencesin shoot density, neither time course of shoot growth nor theirmortality differs between the centre and periphery of patches;and (4) rhizomes ofR. japonicagrow outwards with regular sympodialbranching. From these results, it is concluded that neither interspecificnor intraspecific competition is likely to be a primary causeof the die-back phenomenon, but that central die-back is broughtabout intrinsically by the growth pattern of the rhizome systems.We also discuss the importance of the central die-back in facilitatingestablishment of later successional species in the early stagesof primary succession. Clonal plant; central die-back; competition; facilitation; Japanese knotweed; Mount Fuji; primary succession;Reynoutria japonica ; rhizome growth; volcanic desert  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号